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It is well-known that there is an intimate connection between the Radon- 

Nikodym property and martingale convergence in a Banach space. This connection 

can be "localized" to a closed bounded convex subset of a Banach space. In this 

paper we are interested primarily in this connection for a bounded convex set 

which is not closed. 

If C is a bounded convex set in a locally convex space, C is said to have 

the martingale convergence ~ro~erty iff every martingale with values in C con- 

verges in measure. Since C is not assumed to be metrizable, it is appropriate 

to use martingales indexed by an arbitrary directed set~ and not restrict attention 

to sequential martingales. Similarly, C is said to have the Radon-Nikodym property 

iff every vector-valued measure defined on a probability space with average range 

in C has a derivative which has sufficiently strong measurability properties. 

The one-dimensional example of an open interval shows that the two properties are 

no longer equivalent. Theorem 2.4 describes the connection between the two notions. 

This paper is also concerned with an ordering on the tight probability measures 

on a bounded convex set C . The ordering ~ , which has been called "comparison 

of experiments", "the Choquet ordering"~ "the dilation ordering"~ and many others, 

can be described in many equivalent ways; they are given in Theorem 2.2. For 

example, means J J for all bounded continuous convex  ctions f 

on C . Other descriptions of the ordering involve dilations and conditional 

expectations. Earlier versions of this theorem have been attributed to: Hardy 3 

Littlewood and Polya~ Blackwell, Stein~ Sherman, Cartier and Strassen. 

One other result proved here deserves mention (Corollary 2.7). If C is a 

separable closed bounded convex subset of a Banach space, and if each point of C 

admits a unique representing measure on the extreme points of C ~ then C has 

the Radon-Nikodymproperty. 
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The attentive reader will notice that the assumption of convexity is hardly 

ever used in an essential way, so that most of what appears below has a reformula- 

tion for nonconvex sets C . I have not included such reformulations here. 

The paper has two sections. The first is preliminary; the results there are 

either substantially known or straightforward, so most proofs are omitted. The 

second section contains the main results of the paper, including those mentioned 

above; proofs are given in this section. 

1. 

If T is a completely regular Hausdorff space~ we will write ~(T) for the 

Banach space of all bounded continuous real-valued functions on T . We will be 

interested in several subsets of the dual ~(T)* in its weak* topology. First, 

Pf(T) = IS E ~(T)*: (~,i> = i , ~ ~ O) ; 

this can be identified with the set of finitely-additive regular probability 

measures on the algebra generated by the zero sets [18, p. 165]; the identification 

(and similar ones below) will be made whenever convenient. Note that ~f(T) is 

compact. Next, 

~q(T) = [~6Pf(T): if fnE~(T) (n=l,2,...), fn~O,then (~,fn)÷O} ; 

these measures extend uniquely to the Baire sets of T . Also, 

~T(T) = [~E~f(T): if f~E~(T) is anet, f $O,then <~,f )÷0) ; 

these measures extend uniquely to (closed-) regular measures on the Borel sets of 

T . These are called r-smooth measures. Next, 

~t(T) = [~E~(T]: for each e > 0 ~ there is a compact set 

K ~ T such that ~(K) ~ l-e} ; 

these are called tight measures (on the Baire sets) or Radon measures (on the Borel 

sets). Finally, 

o0 

~s(T) = [ ~ tiCx.: t i >_ 0 , ~ t i = i , x i E T] , 
i=l 1 

n 

~d(T) = [ ~ t.s : n 6IN , t i > 0 , E t. = 1 , x i 6 T] . 
i = l  1 x i - -  1 
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Pt ~ ~s m ~d with Pf = Pt if T is compact. Note ~f ~ ~ ~ ~ 

Let E be a locally convex (Hausdorff) topological vector space, and C a 

subset of E . If ~ E ~f(C) and x E E , we say that x is the resultant of 

, and write x = r(~) , iff for every f E E* , we have (~,f) = f(x) . The 

set C will be called d-convex [resp. s-~t-~-~-~f-convex] iff for every 

E Pd(C) [resp. Ps(C)~ etc.]~ there exists r(~) E C . Note that d-convex is 

the same as convex and that f-convex is the same as compact and convex. We will 

say that C satisfies condition (EC) iff the closed convex hull of a compact 

subset of C is a compact subset of C , i.e. if K ~ C is compact, then there 

is a compact convex set K 1 with K c_ K1 _c C . 

The following is from F 8]. 

1.1 PROPOSITION. (a) The set C satisfies condition (EC) if and only if~ for 

every measure ~ E Pf(C) with compact support~ the resultant r(~) exists in 

C . 

(b) C is t-convex if and only if C is s-convex and satisfies condition 

(EC). 

I t  i s  e a s y  t o  show t h a t  Px(T) i s  x - c o n v e x ,  where  x = d , s , a , f  . I t  i s  

n o t  h a r d  t o  show t h a t  P~(T) i s  T -convex .  I n d e e d ,  su p p o se  ~ 6 PT(PT(T))  • 

Then ~ = r ( ~ )  e x i s t s  i n  ~ f ( T )  . I f  f i s  a n e t  i n  Cb(T ) w i t h  f ~  ~ 0 , 

then for all k 6 PT(T) , we have (k,f~) ~ O . But for each ~ , the function 

k ~  ( k , f ~ >  i s  i n  C5(e  (T))  , so  ( ~ , f ~  = j[ ( k , f ~ >  d ~ ( t )  ÷ 0 s i n c e  7 i s  

~-smooth. Thus ~ is ~-smooth. 

An example of D. H. Fremlin shows that ~t(T) need not satisfy condition 

(EC) and therefore need not be t-convex. Clearly, if ~(T) = ~t(T) (such spaces 

T are called, variously~ "universally measurable" or "semi-Radonian" [10~ Theorem 

2, p. 133]), then ~t(T) is t-convex. 

Let C be a subset of a locally convex space E ~ and let (~,~,P) be a 

probability space. If ~: Q ÷ C is Borel measurable~ we define a Borel measure 

~(P) on C by ~(P)(B) = P(~'I(B)) • We will write LO(~,~,P;C) for the set 

of all Borel measurable functions ~: ~ ~ C such that ~(p) ~ ~t(C) , i.e. for 

every Borel set B -~ C , and every ¢ > 0 , there is a compact set K ~- B with 

P(~-l(B)\~-l(K)) < e . For ~ ~ LO(~;C) , we will write x = ~A ~ dP iff 

f(x) = 3 f(~(~))dP(~) for all f ~ E* ; if such an element x exists for each 

A 
A ~ ~ ~ we will say that ~ is Pettis integrable. (Elements ~ @ of L 0 should 

be identified iff they are weakly equivalent, i.e. f o ~ = f ° ~ a.e. for all 

f ~ E* , the exceptional set may depend on f .) 
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Let E be a locally convex space, let (~,~,P) be a probability space, and 

let m: ~ + E he a vector-valued measure. The P-average range of m is 

{m(A)/P(A): A E 3, P(A) > Ol • We say m is differentiable with respect to P 

iff there exists q E LO(~;E) such that m(A) = ] ~dP for all A 6 ~ ; in that 
A 

case we write q = dm/dP . A bounded subset C of E is said to have the Radon- 

Niko~ property iff for any probability space (~P) and any measure m: ~ + E 

with m << P and average range contained in C , there exists dm/dP 6 L0(~,P;C) • 

Here is the Radon-Nikodym theorem which will be used below. The basic form 

goes back to Grothendieck; the version given here can be found in [13, Theorem 4.9]• 

except for the assertion that dm/dp E L 0 • 

1.2 THEOREM. Let C be a subset of a locally convex space E , let (~,~,P) be 

a complete probability spa ce~ and let m: ~ + E be a vector-valued measure << P . 

Suppose that m almost has P-average range relatively compact in C . Then there 

exists dm/dP E LO(~,~,P;C) • 

The following corollary has been proved independently by several mathematicians 

(see for example [4, Theorem 3.1]• [9• Th~orSme 4.2]). 

1.3 COROLLARy. Let T be a oompletely regular s~0ace. Then ~t(T) has the Radon- 

Nikodym property. 

Let E be a locally convex space, (~,~,P) a probability space, ~ E 

LO(~,3,p;E) . Let ~ be a sub-~-algebra of 3 . A conditional expectation of 

given ~ is a function ¢ 6 LO(~,~,P;E) such that f • ~ = Elf ° q01~] for all 

f E E* ; we write # = E[~I~] • If ~0 E LO(~;C) , ~ where C is a bounded t-convex 

subset of E , then ~ : E[~I~] if and only if j ~ dP : ~ ~ dP for all A E }. 
A ~A 

Thus, if C also has the Radon-Nikodym property, then E[%01~] necessarily exists. 

Let C be a bounded convex subset of a locally convex space E . A martingale 

in C consists of: a probability space (~,S,P) ~ a directed set J ; a family 

(SG)GE J of sub-~-algebras of ~ indexedby J such that ~ c ~ if ~<~ ; 

E LO(~,~,P;C)~ and ~ = E[%I~ ~] if G ~ ~ • and a family (~)~ ~ where % 
Let (~J)~6J be a martingale in C , and let 9 E LO(~,P;C)~ ~. We say that 

closes (q0~) iff ~ = E[%01~] for all ~ 6 J . We say that %0 converges 

in measure to ~ if f, for every neighborhood U of 0 in E • 

1 ~  P{~: %(®) - m(®) E u} = 1 . 
@ 6 J  

We say that ~ converges in mean to ~ iff, for every continuous seminorm 

on E 

lira q ( ~ ( ® )  - ~(®))~p(®) = o . 

c~E# 
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1.4 PROPOSITION. Le__~t (~) be a martingale in C , and let q E LO(~,~•P;C) . 

The following are equivalent. 

(a) ~ converges in measure to ~ ; 

(b) ~ converges in mean to ~ ; 

(c) ~ closes (~q) and ~ is measurable with respect to the ~-algebra 

generated by U~E J ~ . 

1.5 PROPOSITION. Le__~t (~j) be a martingale in C . Then (~) converges in 

measure if and only if ~(P) converges in @t(C) . 

The bounded convex set C is said to have the J-martin6~ e convergence 

property iff every martingale in C indexed by J converges in measure. (The 

IN-martingale convergence property will be called the sequential martingale con- 

vergence property.) Also~ C is said to have the martingale convergence property 

iff it has the J-martingale convergence property for all directed sets J . The 

well-ordered martingale convergence property and the total!y-ordered martingale 

convergence propert~ are defined in a similar fashion. 

2. 

Let E be a locally convex space~ and let C be a botmded convex subset 

of E . A partial order can be defined on ~t(C) as follows. If ~,v E @t(C) • 

define ~ ~ v iff (~f) ! (v~f) for all bounded continuous convex functions f 

on C • This relation is clearly reflexive and transitive; the antisymmetry of 

the relation follows from the following result, which essentially goes back to 

LeCam (see [14• p. 216], [ii, Lemma 2.1], [12, Lemma 3.1]). 

2.1 PROPOSITION. Let (T,~) be a com~letel~ regular s~ace. Suppose F {~(T) 

is a class of functions which separates points of T and if f,g ~ F , then the 

pointwise maximum f Vg E F . Let ~' be the topology on T generated by F • 

I f  ~ , ~  E ~t(T, ~') an__A 

lim~ IT fd~ = IT fd~ for all f E F • 

then ~ + ~ in the weak* topology of ~t(T~ ~') . In particul~, if 

..... ='"~'fdv ~t(T,~) and i fdb for all f E F , then ~ = ~ • 

Let ~ E ~t(C) • A ~-dilation is a function 

T E LO(c,~(C)•~; Pt(C)) 

b~ E 

such that for every h E E* • we have (T(x),h) = h(x) for w-almost every x . 

(~(C)) denotes the Borel sets on C ; ~(C) the completion with respect to ~ ; 
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~t(C) is understood to have its weak* topology.) If C is t-convex, then r(T(x)) 

exists for every x , so in that case the condition is the same as the assertion 

that r ~ T is weakly equivalent to the identity on C .~ If v 6 Pt(C) , we write 

v = T(b) , and say that b dilates to v , iff <v,f> = j <T(x),f) d~(x) for all 

f ff Cb(C) ; t h a t  i s ,  v = ] T d~ i n  ~ t (C)  , 

The following theorem shows that the ordering ~ can be characterized in 

terms of dilations and in terms of conditional expectations. It goes back (in 

the one-dimensional case) to Hardy, Littlewood and Polya. The proof here is 

closest to that of V. Strassen [17]. 

2.2. THEOREM. Let C be bounded and convex~ and let ~,~ E Pt(C) . The following 

are equivalent: 

(a) b ~i v ; i.e. (~,f) ~ (v,f) for all bounded continuous convex functions 

f on C ; 

(b) ~ dilates to v ; i.e. there is a ~-dilation T: C ÷ ~t(C) such that 

T(b)  = ~ ; 

(c) There exist a ~robability space (~,~P), ~ a-algebra ~ ~ S , and functions 

Proof. (a) = (b). If f E ~(C) define its upper envelope f^: C ÷ ]R by 

f^(x) =inf[h(x): his bounded continuous and affine on C and h ~ f] • 

Note that for fixed f , the map x ~ f^(x) is upper semicontirmous, hence Bore! 

measurable. Also, for fixed x , the map f ~. f^(x) is continuous for the uniform 

norm on %(C) • We can also write 

f^(x) =inf{h(x): h is bounded continuous and concave on C and h ~ f] • 

Let S 

x ~ ~ ( c ~  . 

be the vector space of all Borel-measurable simple functions 

Define p: S + ]R by 

p(e) = ] e(x)^(x) d~(x) 

This integral exists since the integrand is bounded and Borel measurable. 

easily checked that p is a sublinear functional on S . For f E ~(C) 

A 6 8(C) , define XA ® f 6 S by 

(XA ®f)(x)= I~ if x E A 

if x %A 

8: 

(i) 

It is 

and 
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Thus f ~ X C ® f is an embedding of ~(C) in S • Define a linear functional 

on the range of this embedding by 

We claim that Z(Xc® f) ~ p(Xc® f) . Let h be concave bounded and continuous 

on C and h~ f • Then J f dv ~ ~i dye! h db (bY the assumption that 

~ v ), so by the tightness of ~ , f dv _ ] f^ d~ ; i.e. ~(NC ®f) ~ P(Xc®f)" 

By the Hahn-Banach theorem, the linear functional Z can be extended to 

all of S with ~(8) ~ p(~) for all 8 E S . Define m: ~(C)+ ~(C)* by 

(m(A),f) = £(%A®f) • Now if h is affine, bounded and continuous on C , then 

~ h^ db = JA hd~ ; similarlY h ̂  = h , so <m(A),h) = ~(XA®h ) i P(XA®h) = A 

(-h) ̂  = -h , so (m(A),-h) ~ J (-h)db ; therefore 
A 

<m(A),h) = ] h d~ (3) 
A 

In particular (m(A),l) = b(A) • Again, if f E ~(C) and f ~ 0 , then (-f)^ ! O, 

so <m(A),f> = ~(XA®(-f)) i P(XA®(-f)) = J (-f)^ db i 0 ; thus <m(A),f> ~ 0 . 
A 

Now if f ~ O , then <m(i),f) = <m(C),f) - (m(C\A),f) S <m(C),f) = ~(Xc®f ) = 

(v,f) , so O ~ m(A) Z v . This shows that m(n) is tight, so m(A)/b(A) E ~t(C) . 

Thus the vector-valued measure m: ~(C) ÷ ~(C)* has average range in ~t(C) . 

By Corollary 1.3, there is T: C ~ ~t(C) , T E LO(c,~(C),b; ~t(C)) , such 

that ~ T d~ = m(A) for all A E ~(C) . Now (v,f) = ~(Xc®~ = (m(C),f) = 
A 

I (T(x),f) d~(x) for all f E ~(C) , i.e. v = T(b) Finally, if h E E* then j • 

for A E ~(C) , using (3) yields J <T(x),h> d~(x) = <m(A),h) = .I h db , so 
A -A 

(T(x),h) = h(x) b-a.e. Thus T is a ~-dilation. 

(b) = (c). Suppose v = T(b) . Let a = C × C , $ = ~(C) X 8(C) , ~ = 8(C) × 

[C,~} , and define %~: ~ ÷ C by q(x,y) = x , ¢(x,y) = y . Define P on 

by 

P(D) = ~ T(x)(Dx) d~(x) , 

where D = [y E C: (x~y) E D1 • 
x 

is a dilation. It follows that 

The integrand is ~b(C) - measurable since T 

] g dP = ] ] g(x,y) d[T(x)~(y) d~(x) 
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for any bounded S-measurable ft~uction 

so ~(P) = ~ , ¢(p) = v . 

and h E E* 

g on ~ • Now for A E B(C) 

~(P)(A) = P(~- I (A) )  = I T (x ) ( (A  XC)x)d~(x ) 

= ~ 1 d~(x) = ~(A) , 
A 

~P)(A) = P(9-1(A)) = ~ T(x)((C ×A)x ) d~(x) 

= ~ T(x)(A) d~(~) = T(~)(A) = ~(A) , 

This shows that %¢ E LO(~;C) . Also, for any A ~ ~(c)  

~A EC h o $ dP = ~A ~C h(y)dT(x)(y) d~(x) 

= ~ ho~dP 
~A xC 

so ~=E[$]~] . 

( c )  ~ ( a ) .  S u p p o s e  ~ = E [ ~ / ~ ]  a n d  ~ ( P )  = ~ , $ ( P )  = v . L e t  f b e  

bounded~ continuous and convex on C . They by Jensen's inequality, (~,f) = 

Here is a lemma which is probably known~ but I am unable to provide a refer- 

ence. The proof is~ apparently, not merely are application of Zorn's Lemma~ but 

requires well-ordering as well. 

2.3. LEMMA. Le~t (P~) be a partially ordered set. Su~ose every chain in P 

has at least u~pe r bound. Then any subset of P which is directed has at least 

upper bound. 

Proof. Let D G P be a directed subset of P . Let ~ be the collection 

of all A c p which satisfy 

(a) A = D ,  

(b) if C is a chain included in A , then sup C E A . 

Notice that P 6 ~ , so ~ ~ ~ . Let M = O~ . Then M 6 ~ . 

Next~ let ~ be the collection of all B m P which satisfy 

( a )  D=B=M, 

(b) B is directed. 

Notice that D @ ~ , so ~ ~ ~ . Apply Zorn's Lemma to ~ ; let R E ~ be maxi- 

mai. We claim that R E ~ • Trivially R o D . Suppose (for purposes of contra- 
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diction) that not every chain in E has its sup in R . Then there is a well- 

ordered chain in R with sup not in R . Let ~ be the least ordinal of such 

a chain. Let R' = [sup C: C is a chain of order type ~ included in R) U R . 

We cls~m that R' E ~ . Clearly R' ~ R o D and R' ~ M . To prove that R' 

is directed, let x,y E R' , say x = sup[xy: Y < ~] ~ Y = sup[yv: V< ~] , with 

x ,yy E R . (If x E R , let xv = x for all y < ~ .) Define z E R inductively 

so that 

z~+ l>_x , z+ l>_y~, zv+ l> z v (1) 

and if y < ~ is a limit ordinal, 

z : sup(z : ~ < ~) (2) 

Now (i) is possible since R is directed and (2) is possible by the minimality 

of ~ . Then z = sup[zy: ~ < ~J E R' and z >_ x , z > y . Thus R' is directed, 

so R' E ~ . By the maximality of R , we have R' = R ~ so in fact every chain 

in R has its sup in R . Thus R E ~ • Then we have R ~ M , so R = M . This 

chows that M is directed. 

Next, we claim that every subset S of D has an upper bound in M . To 

prove this~ well-order S = [xy: y < ~] , and proceed by induction on ~ . For 

= i , S = [x o] G M . If ~ = ~ + i , let y E M be an upper bound for [xy: 

y < ~) , which exists by the induction hypothesis; since M is directed, there 

is an upper bound for (y,x~] in M . If ~ is a limit ordinal, construct in- 

ductively yy >_ xy , yy E M , yy increasing. Since M E ~ , sup[yy: y < ~) E M 

and is the required upper bound. 

In particular, D itself has an upper bound in M , say x ° If y is 

any upper bound for D in P , then Ix E P: x < y) E~ , so M c [x E P: x < y) , 

and hence x ° <_ y . Therefore x o is the least upper bound of D ~ q.e.f. [] 

2.4. THEOREM. Let C be a bounded convex set in a locally convex space. Consider 

the following conditions : 

(a) C has both the Radon-Nikodym prqperty and the sequential martingale 

convergence property. 

(b) C has the well-ordered martingale convergence property. 

(c) C has the martingale convergence property. 

(b') Every well-ordered subset of ~t(C) has a least upper bound. 

(c') Every directed subset of Pt(C) has a least upper bound. 

Then: (b), (o), (b'), (c') are equivalent and imply (a). If C i_~s t-convex~ 

then all ,,five conditions are equivalent. 
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Proof. (b) = (c). Suppose C has the well-ordered martingale convergence 

property. Let D be a directed set, and suppose (~)~ED is a martingale with 

values in C ; the additional data is (~,S,P) , (S~)~ED * There is a partially 

ordered set Q -~ D in which each chain has a least upper bound, namely let Q 

be the set of ideals of D [1, p. ll3]. As in the proof of Le~na 2°3, there is 

a directed set M , D ~ M ~ Q , such that every chain in M has sup in M , and 

if D c_ A ~ M and every chain in A has sup in A , then A = M ° For each 

E M , define ~ to be the a-algebra generated by U[~: ~ E D, ~ ~ Y) • Let 

A = [y E M: there exists ~ E L0(~,~N,P;C ) _  such that ~ = E[~I~]__ for all 

E D with ~ ~ ~} . Note that such a function ~ (if it exists) is unique 

as an element of LO(Q,~,P;C) . Hence, if ~,~' E A , and ~ < _ y' , then 
I 

Clearly D ~ A ~M . We claim that every chain in A has sup in A . Let 

B be a chain included in A ; write Y = sup B . Now B has a well-ordered 
0 

cofinal subset B ° Then (~7)~E B is a well-ordered martingale, so it con- 
o 

verges; by Proposition 1.4, its limit ~7 ° satisfies ~G = E[~?olS~] for all 

E D , (~ <_ Yo ' so 7 o E A . (By the choice of Q , if G < ~o ' then ~ <_ 7 

for some 7 6 B o .) Thus, every chain in A has sup in A , so we have A = M . 

Now M is directed, so M has a largest element 7 The martingale 

(q0)j~ D is closed by %07~ ~ , so (q0) converges. 

(c) = (b) is trivial. 

(c) = (a). Suppose C has the martingale convergence property. Then C 

trivially has the sequential martingale convergence property. Let (~,S,P) be 

a probability space and m: ~ + E a vector-valued measure with m << P and 

average range included in C . Let D be the set of finite 3-measurable partitions 

of ~ , ordered by a.e. refinement. For ~ = [~,A2, ...,A n ) E D , let Sj be the 

c-algebra generated by {AI,...,An) , and define ~: Q + E by 

q ~ =  Z ~ - ~  X A , 
AE~ 

where we interpret 0/0 as an arbitrary element of C . Then ~ 6 LO(~,~,P;C) , 

and if c~ < ~ , we have ~(~ = E[~ I~] ° Thus (<~c~) is a martingale with values 

in C . Let ~ E L°(Q,S,P;C) be the limit of (~0) • Thus q0 = E[~I3¢z] for 

all c~ E D by Proposition 1.4. Let A 6 3 • Then ~ = [A,Q\A} E D , and we 

have 

A A 
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so dm/dP = q0 . Thus C has the Radon-Nikodym property. 

(a) = (b). Let C be t-convex. Suppose C has the Radon-Nikodym property 

and the sequential martingale convergence property. Let (~j)~< ~ be a martingale 

indexed by the ordinals less than the ordinal ~ . If ~ = ~ + 1 ~ then (q0)(~< 

is closed by ~ • If ~ has countable eofinality, then convergence follows from 

the sequential martingale convergence property. Suppose that ~ has uncountable 

cofinality, that is, any countable set of ordinals < ~ has an upper bound < ~ . 

Let ~ denote the ~-algebra generated by U{~: ~ < ~} . Since ~ has uncount- 

able cofinality, ~ = U{~Cz: ~ < ~} . For A 6 ~ , say A 6 ~ , let re(A) : 

~A~C x d2 This integral exists since C is t-convex. The average range of m @ 

is included in C , so by the Radon-Nikedym property, there exists ~p = dm/d2 . 

j so Thus Nowif 
A 

converges to ~ • 

(b') ~ (c') follows from Le~na 2.3; (b')=(b) follows from Proposition 1.5. 

(C') = (b ' )  i s  t r i v i a l .  

(b) ~ (b'). Suppose C has the well-ordered martingale convergence property. 

Let (by)~< { be a well-ordered subset of ~t(C) . Fir ~ <_ { , let ~ be a 

product of copies of C indexed by the ordinals < o; ; equip ~ with the product 

~-algebra; for y < ~ <_ { , define ~,y: % ~ C by q0 7(w ) = 0o(y) ; and let 

~,7 be the a-algebra on ~ generated by (~,~)~<7 . We will define inductively 

a measure p~ on ~ so that, for each ~, (q0 ,Fj, 7)7<~ forms a martingale 

and ~j,~(PC~ ) = ~ . On ~ : C , let P1 = ~0 so that %,0 (PI) = ~0 " Suppose 

cz > ! and ~5 has been defined for all 5 < ~ . 

First~ suppose cz is a limit ordinal. Then ~ is the inverse limit of 

(~5<Cz and the measures P5 are consistent, so there is a unique extension 

Pj to ~ consistent with the P~ . 

Next, suppose ~ = ~ +l . Then (~S~)~<~ is a martingal% hence converges, 

say to ~: ?~ + C . (If S = ~'+l , then of course ~S = ~8,~' " ) Now the 

measure ~ = $~(P~) is the least upper bound of (~7)~<~ ~ so ~ -~ ~S . 

Choose a ~ -dilation T so that T~(~) = ~ . Define P(~ on ~ = ~ × C by: 

Jc T~(x)(A)d'~(x) , ~(A) 

where A m = [X 6 C: (~,x) E A} for co 6 % . Thus ~Cz,~(Pj) = % and E[qdx,~l 

~cz,~ '] = ~cz,~' for ~' <_ ~ . This completes the inductive definition of 

(P~)~<_ { • 

AS befor% (q0~,y)~<~ is a martingale~ hence converges, say to ~: ~ ÷ C . 

The measure v~= ~(P~) is the least upper bound of (~7)7< ~ . [] 
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If the condition (b') or (c') is satisfied, then (accoring to Zorn's Lemma) 

for every S E ~t(C) , there is a maximal k E ~t(C) with X ~ ~ . This fact 

is relevant in Choquet-type representation theorems: see [16, p. 2~], [6, p. 1}7]. 

Next is a result giving conditions under which every maximal measure is 

concentrated on the extreme points in the sense that ~(B) = 1 for every Borel 

set B ~ ex C . (This is not true in general~ even if C is a closed bounded 

convex set in a Banach space: see [6~ p. 1~9].) Of course., part (iii) is weaker 

then the kno~m Bishop-de Leeuw Theorem. 

2.5 PROPOSITION. Let C be a bounded convex subset of a locally convex space. 

Suppose either 

(i) C is analytic; o_~r 

(ii) C is completely metrizable and r: Pt(C) ÷ C is open; or 

(iii) C is compact and r is open. 

Then if ~ E ~t(C) is maximal ~ we have ~(B) = 1 for every Borel set B m ex C . 

Proof. We will prove the contrapositive. Suppose ~(B) < 1 for some Borel 

B a C . Then we may assume without loss of generality that there is a compact 

K ~ C\ex C with ~(K) = 1 . In each of the three cases, C is t-convex, 

r: Pt(C) + C is defined. Let g = [¢x: x E C) . Now ~ is closed in ~t(C) 

set 

set 

so 

and, in case (i) r is continuous on Pt(C)\R , which is analytic; in case (ii) 

r is continuous and open on Pt(C)\R which is completely metrizable; in case 

(iii) r is continuous and open on ~t(C)\~ which is locally compact. Then 

(i) by the yon Neumann selection theorem or (ii) (iii) by [7]~ there is a measurable 

weak section T: C\ex C * Pt(C)\R ~ i.e. r 0 T is weakly equivalent to the identity 

on C\ex C . Define T(x) = Cx for x E ex C , so that T is a ~-dilation. We 

claim that T(~) ~ ~ ; this will show that ~ is not maximal. 

Now T E L O ~ so there is a compact set ~ c Pt(C)\ ~ with ~ c T(K) and 

~(T-l(~) N K) > O . But ~ is compact~ R is elosed~ and ~ N ~ = ~ ~ so there 

is a continuous function h: Pt(C) ÷ ]R such that h = 0 on ~ , h = 1 on 

and 0 < h < 1 . Now ~[x: h(T(x)) ~ h(¢x)] > O . But the topology of Pt(C) 

is generated by the set of maps ~ ~ ~ f d~ , where f is bounded continuous 

convex (Proposition 2.1). Thus there is a bounded continuous convex function f 

such that ~[x: (T(x),f> ~ (ex, f> } > 0 . Thus (T(~),f> = i (T(x),f)d~(x) > 

(~,f> . Therefore T(~) ~ ~ , and thus ~ is not maximal. [] 

Condition (iii) is studied by R. C. O'Brien in [15]. 

Let (O,~P) be a probability space and C a bounded convex set. Write 

~+ = {A E ~: P(A) > O} ° A function ~: ~+ ~ C is an averaged measure provided 
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for disjoint A, B E 5 + . Clearly, if m is a measure with average range in C , 

then m/P is an averaged measure with values in C and conversely (countable 

additivity of m = P • ~ follows from the boundedness of C ). 

2.6 PROPOSITION. Let C' , C be bounded convex sets in locally convex spaces. 

Suppose u: C' + C is continuous~ bijective and affine. If C' has the Radon- 

Nikodym property~ then C has the Radon-Nikodym property° 

Proof. Let (~, ~P) be a probability space, m a measure with average 

range in C . Then ~ = m/P is an averaged measure in C . Define ~': 5 + * C' 

by ~'(A) = u-l(~(A)) . Since u is bijective and affine, ~' is an averaged 

measure in C' . Since C' has the Radon-Nikodym property, there is ~' ELO(~,~,P; 

C') with ~'(A) = P(A)-I j - ~' dP for all A E ~ + . Let ~ = uo~' . Now u is 
A 

continuous, so ~0 E LO(~,~P;C) . Also u is continuous and affine, so ~(A) = 

U(~'(A)) : P(A) -I .~ uoq0 dP = P(A) -I ~^ ~dl ° . Thus C has the Radon-Nikodym 

property. D 

2. 7 COROLL~2Y. Let C be a bounded convex set in a locally convex space. Write 

ex C for the set of extreme points of C . Suppose that 

(1) ex C is relatively t-convex in C ; i.e. for ever 7 ~ E ~t(ex C) , there 

exists r(~) E C ; 

(2) for every x E C ~ there is a unique ~ E ~t(ex C) with r(~) = x . 

Then C has the Radon-Nikodym property. 

Proof. First, ~t(ex C) has the Radon-Nikodym property by Corollary 1.3. 

The resultant map r: Pt(ex C) ÷ C is defined by (1) and bijective by (2); it is 

always affine and continuous. Thus by Proposition 2.6, C has the Radon-Nikodym 

property. E) 

Remarks. (1) For example, if C is a separable closed bounded convex subset 

of a Banach space, then ex C is universally measurable [2~ Prop. 2.1], so Pt(exC) 

can be identified with [~ E Pt(C): ~(ex C) = l) . Thus, if every point of C is 

represented by a unique measure on ex C ~ then C has the Radon-Nikodym property. 

This is a (very) partial converse of [5]. 

(2) If C is a separable closed bounded subset of a Banach space and C is 

a (noncompact) simplex, does it follow that a point of C can have at most one 

representing measure on ex C ? (The Radon-Nikodym property is not postulated, 

cf. [3~ Theorem i.i].) 

(3) If C is a nonseparable closed bounded convex subset of a Hilbert space, 

the set of maximal measures on C need not have the Radon-Nikodym property (the 

example in [6, p. i~9] exhibits this behavior), so Proposition 2.6 will not apply 

in this case. 
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Note. After this paper was ,~itten, H. yon Weizs[cker kindly gave me a copy 

of his paper "Einige masstheoretische Formen der S[tze yon Krein-Milmanund Choquet". 

It has considerable overlap with the present paper. Among many other things, von 

Weizs[cker gives an example of a completely regular space T for which ~t(T) 

fails the martingale convergence property. (See yon Weizs[cker's paper in this 

volume. ) 
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